Expectation value of Random Variables, Bernoulli process

Given a continuous random variable x has a probability density function (pdf), p(x), in a range of [a, b], then the expectation value (or average) of function g(x) is given by

Image for post
Image for post

Since the denominator in the above equation is the cumulative distribution function (cdf) of the given p(x) probability density function (pdf) and it is defined as normalized to 1 so the above equation can be written as

Image for post
Image for post

Also for a discrete random variable, expectation formulation for g(x) is:

Image for post
Image for post

This means that the integration operators are replaced with summation operators when working with discrete random variables.

Now, if we set g(x) equal to x, i.e., the random variable itself, then we obtain the expectation value (“true mean”) of the random variable as

Image for post
Image for post

Again, for a discrete random variable, the expectation value formulation reduces to

Image for post
Image for post

The variance formulation of the x ( true variance ) is as follows

Image for post
Image for post
Image for post
Image for post

The square root of the variance is designated by σ, and referred to as the “standard deviation” that is an indication of how a random variable is distributed about its mean. The “true mean” and “true variance” also are referred to as the population parameters, because they are obtained based on a known probability density function, i.e., population.

A Bernoulli process refers to a physical process that has only two outcomes and the probabilities of these outcomes remain constant throughout the experimentation. The probability density function of a Bernoulli process with outcomes (random variables) n is given by

Image for post
Image for post

where p varies in a range of [0,1].

Examples for a Bernoulli process can be coin toss and transmission of particles through a shield.

The expectation value of a Bernoulli R.V. (n) is given by

Image for post
Image for post

Remember it is calculated for only one event.

And the variance of this random variable only for one event is given by

Image for post
Image for post

Which is

Image for post
Image for post

Now consider a Bernoulli process is repeated N times, with outcomes n(i), then the sum of these outcomes is

Image for post
Image for post

Which itself is another random variable with specific pdf that is binomial distribution.

The distribution function for the probability of obtaining n outcomes (“successes”) out of N experiments (trials) follows a binomial distribution.

What is interested is the expectation value of number of successes (n) which is given by

Image for post
Image for post

And the variance of random variable n is given by

Image for post
Image for post

Written by

Web geek, Self-taught full-stack web developer, Learning Python, Laravel, Vuejs, UX/UI design, Nuclear Physicist PhD

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store